Skip to content
  • Saturday, 14 June 2025
  • 5:11 pm
  • Follow Us
Data Engineer

Data/ML Engineer Blog

  • Home
  • AL/ML Engineering
    • AWS AI/ML Services
    • Compute & Deployment
    • Core AI & ML Concepts
      • Data Processing & ETL
      • Decision Trees
      • Deep Learning
      • Generative AI
      • K-Means Clustering
      • Machine Learning
      • Neural Networks
      • Reinforcement Learning
      • Supervised Learning
      • Unsupervised Learning
    • Database & Storage Services
    • Emerging AI Trends
    • Evaluation Metrics
    • Industry Applications of AI
    • MLOps & DevOps for AI
    • Model Development & Optimization
    • Prompting Techniques
      • Adversarial Prompting
      • Chain-of-Thought Prompting
      • Constitutional AI Prompting
      • Few-Shot Prompting
      • Instruction Prompting
      • Multi-Agent Prompting
      • Negative Prompting
      • Prompt Templates
      • ReAct Prompting
      • Retrieval-Augmented Generation (RAG)
      • Self-Consistency Prompting
      • Zero-Shot Prompting
    • Security & Compliance
      • AWS KMS
      • AWS Macie
      • Azure Key Vault
      • Azure Purview
      • BigID
      • Cloud DLP
      • Collibra Privacy & Risk
      • HashiCorp Vault
      • Immuta
      • Okera
      • OneTrust
      • Privacera
      • Satori
  • Data Engineering
    • Cloud Platforms & Services
      • Alibaba Cloud
      • AWS (Amazon Web Services)
      • Azure Microsoft
      • Google Cloud Platform (GCP)
      • IBM Cloud
      • Oracle Cloud
    • Containerization & Orchestration
      • Amazon EKS
      • Apache Oozie
      • Azure Kubernetes Service (AKS)
      • Buildah
      • Containerd
      • Docker
      • Docker Swarm
      • Google Kubernetes Engine (GKE)
      • Kaniko
      • Kubernetes
      • Podman
      • Rancher
      • Red Hat OpenShift
    • Data Catalog & Governance
      • Amundsen
      • Apache Atlas
      • Apache Griffin
      • Atlan
      • AWS Glue
      • Azure Purview
      • Collibra
      • Databand
      • DataHub
      • Deequ
      • Google Data Catalog
      • Google Dataplex
      • Great Expectations
      • Informatica
      • Marquez
      • Monte Carlo
      • OpenLineage
      • OpenMetadata
      • Soda SQL
      • Spline
    • Data Ingestion & ETL
      • Apache Kafka Connect
      • Apache NiFi
      • Census
      • Confluent Platform
      • Debezium
      • Fivetran
      • Hightouch
      • Informatica PowerCenter
      • Kettle
      • Matillion
      • Microsoft SSIS
      • Omnata
      • Polytomic
      • Stitch
      • StreamSets
      • Striim
      • Talend
    • Data Lakes & File Standards
      • Amazon S3
      • Azure Data Lake Storage
      • Cloudera Data Platform
      • Databricks Delta Lake
      • Dremio
      • Google Cloud Storage
    • Data Platforms
      • Cloud Data Warehouses
        • ClickHouse
        • Databricks
        • Snowflake
          • Internal and External Staging in Snowflake
          • Network Rules in Snowflake
          • Procedures + Tasks
          • Snowflake administration and configuration
          • Snowflake Cloning
      • NoSQL Databases
      • On-Premises Data Warehouses
        • DuckDB
      • Relational Databases
        • Amazon Aurora
        • Azure SQL Database
        • Google Cloud SQL
        • MariaDB
        • Microsoft SQL Server
        • MySQL
        • Oracle Database
        • PostgreSQL
    • Data Streaming & Messaging
      • ActiveMQ
      • Aiven for Kafka
      • Amazon Kinesis
      • Amazon MSK
      • Apache Kafka
      • Apache Pulsar
      • Azure Event Hubs
      • Confluent Platform
      • Google Pub/Sub
      • IBM Event Streams
      • NATS
      • RabbitMQ
      • Red Hat AMQ Streams
    • Data Warehouse Design
      • Data Governance and Management (DGaM)
        • Compliance Requirements
        • Data Lineage
        • Data Retention Policies
        • Data Stewardship
        • Master Data Management
      • Data Warehouse Architectures (DWA)
        • Enterprise Data Warehouse vs. Data Marts
        • Hub-and-Spoke Architecture
        • Logical vs. Physical Data Models
        • ODS (Operational Data Store)
        • Staging Area Design
      • Data Warehouse Schemas (DWS)
        • Data Vault
        • Galaxy Schema (Fact Constellation)
        • Inmon (Normalized) Approach
        • Kimball (Dimensional) Approach
        • Snowflake Schema
        • Star Schema
      • Database Normalization
      • Dimensional Modeling Techniques (DMT)
        • Bridge Tables
        • Conformed Dimensions
        • Degenerate Dimensions
        • Junk Dimensions
        • Mini-Dimensions
        • Outrigger Dimensions
        • Role-Playing Dimensions
      • ETL/ELT Design Patterns
        • Change Data Capture (CDC)
        • Data Pipeline Architectures
        • Data Quality Management
        • Error Handling
        • Metadata Management
      • Fact Table Design Patterns(FTDP)
        • Accumulating Snapshot Fact Tables
        • Aggregate Fact Tables
        • Factless Fact Tables
        • Periodic Snapshot Fact Tables
        • Transaction Fact Tables
      • Modern Data Warehouse Concepts (MDWC)
        • Data Lakehouse
        • Medallion Architecture
        • Multi-modal Persistence
        • Polyglot Data Processing
        • Real-time Data Warehousing
      • Performance Optimization (PO)
        • Compression Techniques
        • Indexing Strategies
        • Materialized Views
        • Partitioning
        • Query Optimization
      • Slowly Changing Dimensions(SCD)
        • SCD Type 0
        • SCD Type 1
        • SCD Type 2
        • SCD Type 3
        • SCD Type 4
        • SCD Type 6
        • SCD Type 7
    • Distributed Data Processing
      • Apache Beam
      • Apache Flink
      • Apache Hadoop
      • Apache Hive
      • Apache Pig
      • Apache Pulsar
      • Apache Samza
      • Apache Spark
      • Apache Storm
      • Presto/Trino
      • Spark Streaming
    • Infrastructure as Code & Deployment
      • Ansible
      • Argo CD
      • AWS CloudFormation
      • Azure Resource Manager Templates
      • Chef
      • CircleCI
      • GitHub Actions
      • GitLab CI/CD
      • Google Cloud Deployment Manager
      • Jenkins
      • Pulumi
      • Puppet: Configuration Management Tool for Modern Infrastructure
      • Tekton
      • Terraform
      • Travis CI
    • Monitoring & Logging
      • AppDynamics
      • Datadog
      • Dynatrace
      • ELK Stack
      • Fluentd
      • Graylog
      • Loki
      • Nagios
      • New Relic
      • Splunk
      • Vector
      • Zabbix
    • Operational Systems (OS)
      • Ubuntu
        • Persistent Tasks on Ubuntu
      • Windows
    • Programming Languages
      • Go
      • Java
      • Julia
      • Python
        • Dask
        • NumPy
        • Pandas
        • PySpark
        • SQLAlchemy
      • R
      • Scala
      • SQL
    • Visualization Tools
      • Grafana
      • Kibana
      • Looker
      • Metabase
      • Mode
      • Power BI
      • QuickSight
      • Redash
      • Superset
      • Tableau
    • Workflow Orchestration
      • Apache Airflow
      • Apache Beam Python SDK
      • Azkaban
      • Cron
      • Dagster
      • DBT (data build tool)
      • Jenkins Job Builder
      • Keboola
      • Luigi
      • Prefect
      • Rundeck
      • Temporal
  • Home
  • Archive by category "ETL/ELT"
Real-Time Data Engineering at Scale
AI Data ETL/ELT

Real-Time Data Engineering at Scale

Alex Jun 7, 2025 0

Real-Time Data Engineering at Scale: Apache Kafka, Flink, and the Rise of Edge AI In today’s hyper-connected world, the ability…

Read More
AWS Glue vs. Traditional ETL Tools
Data ETL/ELT VS

AWS Glue vs. Traditional ETL Tools

Alex May 28, 2025 0

AWS Glue vs. Traditional ETL Tools: A Cost-Performance Analysis When I began modernizing our organization’s data infrastructure last year, we…

Read More
Modern Data Integration
ETL/ELT

Modern Data Integration with Streaming Analytics

Alex Apr 22, 2025 0

Modern Data Integration with Streaming Analytics: Real-Time Ingestion & Processing In today’s fast-paced digital landscape, the ability to ingest, process,…

Read More
The Rise of Real-Time Data Processing: Why Apache Kafka and Flink Are Essential in 2025
Data ETL/ELT

The Rise of Real-Time Data Processing

Alex Mar 20, 2025 0

The Rise of Real-Time Data Processing: Why Apache Kafka and Flink Are Essential in 2025 How Streaming Data Is Rewriting…

Read More
Building Cost-Efficient Data Pipelines in 2025
Data ETL/ELT

Building Cost-Efficient Data Pipelines in 2025

Alex Jan 14, 2025 0

Building Cost-Efficient Data Pipelines in 2025: Strategies for Modern Workloads In 2025, as organizations continue to scale their data operations,…

Read More
Ensuring Data Quality
Data ETL/ELT

Ensuring Data Quality

Alex Sep 17, 2024 0

Ensuring Data Quality: Best Practices for Data Engineers Data engineering isn’t glamorous, but it’s the foundation of every successful data…

Read More
Building Data Pipelines That Scale
ETL/ELT

Building Data Pipelines That Scale

Alex Aug 27, 2024 0

Building Data Pipelines That Scale: Lessons from High-Volume Systems In the world of data engineering, scalability isn’t just a buzzword;…

Read More
Big Data in the Cloud vs. Data Center
ETL/ELT VS

Big Data in the Cloud vs. Data Center

Alex Jan 14, 2024 0

Big Data in the Cloud vs. Data Center: What’s Cheaper, What’s Better? As organizations continue to navigate the complexities of…

Read More
ETL vs. ELT
ETL/ELT VS

ETL vs. ELT: Why the Shift Matters in 2025

Alex Dec 26, 2023 0

In the ever-evolving world of data management, one debate has stood the test of time: ETL vs. ELT. While these…

Read More
Difference Between Micro-Partition
ETL/ELT

Difference Between Micro-Partition and Clustering in Snowflake: A Box-and-Toys Example

Alex Aug 15, 2023 0

When working with Snowflake, understanding the difference between micro-partitions and clustering keys is crucial for optimizing your data storage and…

Read More

Recent Posts

  • GenAI-Assisted Data Cleaning
  • Iceberg vs. Hudi vs. Delta Lake
  • The Great Cloud Vendor War
  • Observability-Driven Data Engineering
  • Mastering Slowly Changing Dimensions

Recent Comments

  1. Ustas on The Genius of Snowflake’s Hybrid Architecture: Revolutionizing Data Warehousing

Archives

  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023

Categories

  • AI
  • Analytics
  • AWS
  • ClickHouse
  • Data
  • Databricks
  • DataLake
  • DuckDB
  • ETL/ELT
  • Future
  • ML
  • Monthly
  • OpenSource
  • Snowflake
  • StarRock
  • Structure
  • VS
YOU MAY HAVE MISSED
GenAI-Assisted Data Cleaning: Beyond Rule-Based Approaches
AI Data
GenAI-Assisted Data Cleaning
Alex Jun 14, 2025
Iceberg vs. Hudi vs. Delta Lake
Data VS
Iceberg vs. Hudi vs. Delta Lake
Alex Jun 13, 2025
The Great Cloud Vendor War
Data VS
The Great Cloud Vendor War
Alex Jun 12, 2025
Observability-Driven Data Engineering
Data
Observability-Driven Data Engineering
Alex Jun 10, 2025

(c) Data/ML Engineer Blog