Skip to content
  • Wednesday, 4 June 2025
  • 6:24 am
  • Follow Us
Data Engineer

Data/ML Engineer Blog

  • Home
  • AL/ML Engineering
    • AWS AI/ML Services
    • Compute & Deployment
    • Core AI & ML Concepts
      • Data Processing & ETL
      • Decision Trees
      • Deep Learning
      • Generative AI
      • K-Means Clustering
      • Machine Learning
      • Neural Networks
      • Reinforcement Learning
      • Supervised Learning
      • Unsupervised Learning
    • Database & Storage Services
    • Emerging AI Trends
    • Evaluation Metrics
    • Industry Applications of AI
    • MLOps & DevOps for AI
    • Model Development & Optimization
    • Prompting Techniques
      • Adversarial Prompting
      • Chain-of-Thought Prompting
      • Constitutional AI Prompting
      • Few-Shot Prompting
      • Instruction Prompting
      • Multi-Agent Prompting
      • Negative Prompting
      • Prompt Templates
      • ReAct Prompting
      • Retrieval-Augmented Generation (RAG)
      • Self-Consistency Prompting
      • Zero-Shot Prompting
    • Security & Compliance
      • AWS KMS
      • AWS Macie
      • Azure Key Vault
      • Azure Purview
      • BigID
      • Cloud DLP
      • Collibra Privacy & Risk
      • HashiCorp Vault
      • Immuta
      • Okera
      • OneTrust
      • Privacera
      • Satori
  • Data Engineering
    • Cloud Platforms & Services
      • Alibaba Cloud
      • AWS (Amazon Web Services)
      • Azure Microsoft
      • Google Cloud Platform (GCP)
      • IBM Cloud
      • Oracle Cloud
    • Containerization & Orchestration
      • Amazon EKS
      • Apache Oozie
      • Azure Kubernetes Service (AKS)
      • Buildah
      • Containerd
      • Docker
      • Docker Swarm
      • Google Kubernetes Engine (GKE)
      • Kaniko
      • Kubernetes
      • Podman
      • Rancher
      • Red Hat OpenShift
    • Data Catalog & Governance
      • Amundsen
      • Apache Atlas
      • Apache Griffin
      • Atlan
      • AWS Glue
      • Azure Purview
      • Collibra
      • Databand
      • DataHub
      • Deequ
      • Google Data Catalog
      • Google Dataplex
      • Great Expectations
      • Informatica
      • Marquez
      • Monte Carlo
      • OpenLineage
      • OpenMetadata
      • Soda SQL
      • Spline
    • Data Ingestion & ETL
      • Apache Kafka Connect
      • Apache NiFi
      • Census
      • Confluent Platform
      • Debezium
      • Fivetran
      • Hightouch
      • Informatica PowerCenter
      • Kettle
      • Matillion
      • Microsoft SSIS
      • Omnata
      • Polytomic
      • Stitch
      • StreamSets
      • Striim
      • Talend
    • Data Lakes & File Standards
      • Amazon S3
      • Azure Data Lake Storage
      • Cloudera Data Platform
      • Databricks Delta Lake
      • Dremio
      • Google Cloud Storage
    • Data Platforms
      • Cloud Data Warehouses
        • ClickHouse
        • Databricks
        • Snowflake
          • Internal and External Staging in Snowflake
          • Network Rules in Snowflake
          • Procedures + Tasks
          • Snowflake administration and configuration
          • Snowflake Cloning
      • NoSQL Databases
      • On-Premises Data Warehouses
        • DuckDB
      • Relational Databases
        • Amazon Aurora
        • Azure SQL Database
        • Google Cloud SQL
        • MariaDB
        • Microsoft SQL Server
        • MySQL
        • Oracle Database
        • PostgreSQL
    • Data Streaming & Messaging
      • ActiveMQ
      • Aiven for Kafka
      • Amazon Kinesis
      • Amazon MSK
      • Apache Kafka
      • Apache Pulsar
      • Azure Event Hubs
      • Confluent Platform
      • Google Pub/Sub
      • IBM Event Streams
      • NATS
      • RabbitMQ
      • Red Hat AMQ Streams
    • Data Warehouse Design
      • Data Governance and Management (DGaM)
        • Compliance Requirements
        • Data Lineage
        • Data Retention Policies
        • Data Stewardship
        • Master Data Management
      • Data Warehouse Architectures (DWA)
        • Enterprise Data Warehouse vs. Data Marts
        • Hub-and-Spoke Architecture
        • Logical vs. Physical Data Models
        • ODS (Operational Data Store)
        • Staging Area Design
      • Data Warehouse Schemas (DWS)
        • Data Vault
        • Galaxy Schema (Fact Constellation)
        • Inmon (Normalized) Approach
        • Kimball (Dimensional) Approach
        • Snowflake Schema
        • Star Schema
      • Database Normalization
      • Dimensional Modeling Techniques (DMT)
        • Bridge Tables
        • Conformed Dimensions
        • Degenerate Dimensions
        • Junk Dimensions
        • Mini-Dimensions
        • Outrigger Dimensions
        • Role-Playing Dimensions
      • ETL/ELT Design Patterns
        • Change Data Capture (CDC)
        • Data Pipeline Architectures
        • Data Quality Management
        • Error Handling
        • Metadata Management
      • Fact Table Design Patterns(FTDP)
        • Accumulating Snapshot Fact Tables
        • Aggregate Fact Tables
        • Factless Fact Tables
        • Periodic Snapshot Fact Tables
        • Transaction Fact Tables
      • Modern Data Warehouse Concepts (MDWC)
        • Data Lakehouse
        • Medallion Architecture
        • Multi-modal Persistence
        • Polyglot Data Processing
        • Real-time Data Warehousing
      • Performance Optimization (PO)
        • Compression Techniques
        • Indexing Strategies
        • Materialized Views
        • Partitioning
        • Query Optimization
      • Slowly Changing Dimensions(SCD)
        • SCD Type 0
        • SCD Type 1
        • SCD Type 2
        • SCD Type 3
        • SCD Type 4
        • SCD Type 6
        • SCD Type 7
    • Distributed Data Processing
      • Apache Beam
      • Apache Flink
      • Apache Hadoop
      • Apache Hive
      • Apache Pig
      • Apache Pulsar
      • Apache Samza
      • Apache Spark
      • Apache Storm
      • Presto/Trino
      • Spark Streaming
    • Infrastructure as Code & Deployment
      • Ansible
      • Argo CD
      • AWS CloudFormation
      • Azure Resource Manager Templates
      • Chef
      • CircleCI
      • GitHub Actions
      • GitLab CI/CD
      • Google Cloud Deployment Manager
      • Jenkins
      • Pulumi
      • Puppet: Configuration Management Tool for Modern Infrastructure
      • Tekton
      • Terraform
      • Travis CI
    • Monitoring & Logging
      • AppDynamics
      • Datadog
      • Dynatrace
      • ELK Stack
      • Fluentd
      • Graylog
      • Loki
      • Nagios
      • New Relic
      • Splunk
      • Vector
      • Zabbix
    • Operational Systems (OS)
      • Ubuntu
        • Persistent Tasks on Ubuntu
      • Windows
    • Programming Languages
      • Go
      • Java
      • Julia
      • Python
        • Dask
        • NumPy
        • Pandas
        • PySpark
        • SQLAlchemy
      • R
      • Scala
      • SQL
    • Visualization Tools
      • Grafana
      • Kibana
      • Looker
      • Metabase
      • Mode
      • Power BI
      • QuickSight
      • Redash
      • Superset
      • Tableau
    • Workflow Orchestration
      • Apache Airflow
      • Apache Beam Python SDK
      • Azkaban
      • Cron
      • Dagster
      • DBT (data build tool)
      • Jenkins Job Builder
      • Keboola
      • Luigi
      • Prefect
      • Rundeck
      • Temporal
  • Home
  • Large Language Models Aren’t Replacing Data Engineers
Large Language Models Aren’t Replacing Data Engineers—They’re Making Them Superhuman
AI Data

Large Language Models Aren’t Replacing Data Engineers

Alex Apr 2, 2025 0

Large Language Models Aren’t Replacing Data Engineers—They’re Making Them Superhuman How LLMs Are Turbocharging ETL Pipelines, Killing Data Debt, and…

Read More
Ensuring Data Quality
Data ETL/ELT

Ensuring Data Quality

Alex Sep 17, 2024 0

Ensuring Data Quality: Best Practices for Data Engineers Data engineering isn’t glamorous, but it’s the foundation of every successful data…

Read More
Databricks for Machine Learning
Databricks ML

Databricks for Machine Learning

Alex Jun 22, 2024 0

Databricks for Machine Learning: A Comprehensive Guide In today’s data-driven world, machine learning (ML) is a critical tool for gaining…

Read More
Snowflake for Machine Learning
ML Snowflake

Snowflake for Machine Learning

Alex Jun 12, 2024 0

Snowflake for Machine Learning: Unlocking the Power of Scalable Data Platforms As machine learning continues to redefine industries, the need…

Read More

Recent Posts

  • Snowflake and LLMs
  • Snowflake Cost-Saving Tactics
  • MLOps and Data Engineering Synergy
  • The Silent Killer of Data Teams
  • Large Language Models Aren’t Replacing Data Engineers

Recent Comments

  1. Ustas on The Genius of Snowflake’s Hybrid Architecture: Revolutionizing Data Warehousing

Archives

  • June 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023

Categories

  • AI
  • AWS
  • ClickHouse
  • Data
  • Databricks
  • DataLake
  • DuckDB
  • ETL/ELT
  • ML
  • OpenSource
  • Snowflake
  • StarRock
  • Structure
  • VS
YOU MAY HAVE MISSED
Snowflake and LLMs
AI Snowflake
Snowflake and LLMs
Alex Jun 2, 2025
Snowflake Cost-Saving Tactics: Real SQL Techniques Using Dynamic Date Ranges and Partition Pruning
Data Snowflake
Snowflake Cost-Saving Tactics
Alex Apr 10, 2025
MLOps and Data Engineering Synergy: Bridging the Gap for Smarter Workflows
AI Data
MLOps and Data Engineering Synergy
Alex Apr 8, 2025
The Silent Killer of Data Teams: How ‘Data Debt’ Cripples Your Analytics
Data
The Silent Killer of Data Teams
Alex Apr 4, 2025

(c) Data/ML Engineer Blog