Skip to content
  • Monday, 23 June 2025
  • 10:34:22 AM
  • Follow Us
Data Engineer

Data/ML Engineer Blog

  • Home
  • AL/ML Engineering
    • AWS AI/ML Services
    • Compute & Deployment
    • Core AI & ML Concepts
      • Data Processing & ETL
      • Decision Trees
      • Deep Learning
      • Generative AI
      • K-Means Clustering
      • Machine Learning
      • Neural Networks
      • Reinforcement Learning
      • Supervised Learning
      • Unsupervised Learning
    • Database & Storage Services
    • Emerging AI Trends
    • Evaluation Metrics
    • Industry Applications of AI
    • MLOps & DevOps for AI
    • Model Development & Optimization
    • Prompting Techniques
      • Adversarial Prompting
      • Chain-of-Thought Prompting
      • Constitutional AI Prompting
      • Few-Shot Prompting
      • Instruction Prompting
      • Multi-Agent Prompting
      • Negative Prompting
      • Prompt Templates
      • ReAct Prompting
      • Retrieval-Augmented Generation (RAG)
      • Self-Consistency Prompting
      • Zero-Shot Prompting
    • Security & Compliance
      • AWS KMS
      • AWS Macie
      • Azure Key Vault
      • Azure Purview
      • BigID
      • Cloud DLP
      • Collibra Privacy & Risk
      • HashiCorp Vault
      • Immuta
      • Okera
      • OneTrust
      • Privacera
      • Satori
  • Data Engineering
    • Cloud Platforms & Services
      • Alibaba Cloud
      • AWS (Amazon Web Services)
      • Azure Microsoft
      • Google Cloud Platform (GCP)
      • IBM Cloud
      • Oracle Cloud
    • Containerization & Orchestration
      • Amazon EKS
      • Apache Oozie
      • Azure Kubernetes Service (AKS)
      • Buildah
      • Containerd
      • Docker
      • Docker Swarm
      • Google Kubernetes Engine (GKE)
      • Kaniko
      • Kubernetes
      • Podman
      • Rancher
      • Red Hat OpenShift
    • Data Catalog & Governance
      • Amundsen
      • Apache Atlas
      • Apache Griffin
      • Atlan
      • AWS Glue
      • Azure Purview
      • Collibra
      • Databand
      • DataHub
      • Deequ
      • Google Data Catalog
      • Google Dataplex
      • Great Expectations
      • Informatica
      • Marquez
      • Monte Carlo
      • OpenLineage
      • OpenMetadata
      • Soda SQL
      • Spline
    • Data Ingestion & ETL
      • Apache Kafka Connect
      • Apache NiFi
      • Census
      • Confluent Platform
      • Debezium
      • Fivetran
      • Hightouch
      • Informatica PowerCenter
      • Kettle
      • Matillion
      • Microsoft SSIS
      • Omnata
      • Polytomic
      • Stitch
      • StreamSets
      • Striim
      • Talend
    • Data Lakes & File Standards
      • Amazon S3
      • Apache Arrow
      • Apache Avro
      • Apache Iceberg
      • Azure Data Lake Storage
      • CSV
      • Databricks Delta Lake
      • Dremio
      • Dremio
      • Feather
      • Google Cloud Storage
      • JSON
      • ORC
      • Parquet
    • Data Platforms
      • Cloud Data Warehouses
        • ClickHouse
        • Databricks
        • Snowflake
          • Internal and External Staging in Snowflake
          • Network Rules in Snowflake
          • Procedures + Tasks
          • Snowflake administration and configuration
          • Snowflake Cloning
      • Cloudera Data Platform
      • NoSQL Databases
      • On-Premises Data Warehouses
        • DuckDB
      • Relational Databases
        • Amazon Aurora
        • Azure SQL Database
        • Google Cloud SQL
        • MariaDB
        • Microsoft SQL Server
        • MySQL
        • Oracle Database
        • PostgreSQL
    • Data Streaming & Messaging
      • ActiveMQ
      • Aiven for Kafka
      • Amazon Kinesis
      • Amazon MSK
      • Apache Kafka
      • Apache Pulsar
      • Azure Event Hubs
      • Confluent Platform
      • Google Pub/Sub
      • IBM Event Streams
      • NATS
      • Protocol Buffers
      • RabbitMQ
      • Red Hat AMQ Streams
    • Data Warehouse Design
      • Data Governance and Management (DGaM)
        • Compliance Requirements
        • Data Lineage
        • Data Retention Policies
        • Data Stewardship
        • Master Data Management
      • Data Warehouse Architectures (DWA)
        • Enterprise Data Warehouse vs. Data Marts
        • Hub-and-Spoke Architecture
        • Logical vs. Physical Data Models
        • ODS (Operational Data Store)
        • Staging Area Design
      • Data Warehouse Schemas (DWS)
        • Data Vault
        • Galaxy Schema (Fact Constellation)
        • Inmon (Normalized) Approach
        • Kimball (Dimensional) Approach
        • Snowflake Schema
        • Star Schema
      • Database Normalization
      • Dimensional Modeling Techniques (DMT)
        • Bridge Tables
        • Conformed Dimensions
        • Degenerate Dimensions
        • Junk Dimensions
        • Mini-Dimensions
        • Outrigger Dimensions
        • Role-Playing Dimensions
      • ETL/ELT Design Patterns
        • Change Data Capture (CDC)
        • Data Pipeline Architectures
        • Data Quality Management
        • Error Handling
        • Metadata Management
      • Fact Table Design Patterns(FTDP)
        • Accumulating Snapshot Fact Tables
        • Aggregate Fact Tables
        • Factless Fact Tables
        • Periodic Snapshot Fact Tables
        • Transaction Fact Tables
      • Modern Data Warehouse Concepts (MDWC)
        • Data Lakehouse
        • Medallion Architecture
        • Multi-modal Persistence
        • Polyglot Data Processing
        • Real-time Data Warehousing
      • Performance Optimization (PO)
        • Compression Techniques
        • Indexing Strategies
        • Materialized Views
        • Partitioning
        • Query Optimization
      • Slowly Changing Dimensions(SCD)
        • SCD Type 0
        • SCD Type 1
        • SCD Type 2
        • SCD Type 3
        • SCD Type 4
        • SCD Type 6
        • SCD Type 7
    • Distributed Data Processing
      • Apache Beam
      • Apache Flink
      • Apache Hadoop
      • Apache Hive
      • Apache Pig
      • Apache Pulsar
      • Apache Samza
      • Apache Sedona
      • Apache Spark
      • Apache Storm
      • Presto/Trino
      • Spark Streaming
    • Infrastructure as Code & Deployment
      • Ansible
      • Argo CD
      • AWS CloudFormation
      • Azure Resource Manager Templates
      • Chef
      • CircleCI
      • GitHub Actions
      • GitLab CI/CD
      • Google Cloud Deployment Manager
      • Jenkins
      • Pulumi
      • Puppet: Configuration Management Tool for Modern Infrastructure
      • Tekton
      • Terraform
      • Travis CI
    • Monitoring & Logging
      • AppDynamics
      • Datadog
      • Dynatrace
      • ELK Stack
      • Fluentd
      • Graylog
      • Loki
      • Nagios
      • New Relic
      • Splunk
      • Vector
      • Zabbix
    • Operational Systems (OS)
      • Ubuntu
        • Persistent Tasks on Ubuntu
      • Windows
    • Programming Languages
      • Go
      • Java
      • Julia
      • Python
        • Dask
        • NumPy
        • Pandas
        • PySpark
        • SQLAlchemy
      • R
      • Scala
      • SQL
    • Visualization Tools
      • Grafana
      • Kibana
      • Looker
      • Metabase
      • Mode
      • Power BI
      • QuickSight
      • Redash
      • Superset
      • Tableau
    • Workflow Orchestration
      • Apache Airflow
      • Apache Beam Python SDK
      • Azkaban
      • Cron
      • Dagster
      • Dagster Change
      • DBT (data build tool)
      • Jenkins Job Builder
      • Keboola
      • Luigi
      • Prefect
      • Rundeck
      • Temporal
  • Home
  • Time Travel in Data Engineering
Data

Time Travel in Data Engineering

Alex Apr 20, 2025 0
Time Travel in Data Engineering

Time Travel in Data Engineering: Mastering Temporal Tables for Audits, Reproducibility, and GDPR Compliance

Good data engineering isn’t just about pipelines—it’s about ensuring the right data reaches the right people at the right time to drive real impact. /AK/

How to Turn Your Data Platform into a Time Machine—Without Doubling Costs

Imagine this: A critical dashboard breaks overnight. Your CEO asks, “What changed?” Instead of panic, you calmly rewind the dataset to yesterday’s state, pinpoint the faulty transformation, and fix it before the morning coffee cools.

This is the power of temporal tables—a game-changer for audits, debugging, and compliance. Let’s explore how tools like Snowflake’s TIME TRAVEL and Delta Lake’s VERSIONING let you bend time in your data pipelines, all while keeping storage costs in check.


Why Time Travel Matters More Than Ever

Data isn’t static. It evolves through updates, deletions, and pipeline changes. Traditional architectures treat data as a snapshot in time, creating headaches like:

– Debugging Nightmares: “Why did last month’s revenue report change?”

– Compliance Risks: GDPR’s “right to erasure” requires deleting user data without destroying audit trails.

– ML Model Drift: Training models on data that no longer matches production.

Temporal tables solve these by preserving every version of your data, intelligently and cost-effectively.

How Temporal Tables Work: Under the Hood

1. Snowflake’s TIME TRAVEL

Snowflake automatically tracks changes to tables, enabling queries against historical data for up to 90 days (configurable).

Key Mechanics:

– Fail-Safe Backups: After TIME TRAVEL expires, data enters a 7-day fail-safe period (not queryable).

– Storage Efficiency: Only stores deltas (changes), not full copies.

– Zero Configuration: Enabled by default—no extra code.

Example: Rewind a Table to Yesterday

CREATE TABLE sales CLONE sales AT(TIMESTAMP => '2024-05-15 08:00:00'::TIMESTAMP);  
-- Or query directly:  
SELECT * FROM sales AT(TIMESTAMP => '2024-05-15 08:00:00'); 

2. Delta Lake’s VERSIONING

Delta Lake (Databricks, Apache Spark) uses transaction logs to track changes.

Key Mechanics:

– Transaction Log: JSON files (_delta_log) record every insert, update, or delete.

– Time Travel via Version Numbers or Timestamps:

SELECT * FROM delta.`/data/sales` VERSION AS OF 12;  
-- Or
SELECT * FROM delta.`/data/sales` TIMESTAMP AS OF '2024-05-15'; 

– Vacuum Command: Manually delete old versions to manage storage.


Real-World Use Cases: Beyond the Basics

1. Audits Made Effortless

Problem: A bank needs to prove to regulators that customer balances on 2023-12-31 matched their records.

Solution:

-- Snowflake 
SELECT * FROM accounts AT(TIMESTAMP => '2023-12-31 23:59:59'); 
-- Delta Lake  
RESTORE TABLE accounts TO VERSION AS OF 45; 

2. Debugging Pipeline Disasters

Problem: A faulty dbt model corrupts your core users table.

Solution:

-- Snowflake  
CREATE TABLE users_recovered CLONE users BEFORE(STATEMENT => '8e5d4d9c-1234-5678-...'); 
-- Delta Lake  
DESCRIBE HISTORY users;  -- Find the last good version  
RESTORE TABLE users TO VERSION AS OF 22; 

3. GDPR Compliance Without Data Amnesia

Problem: A user requests data deletion, but you need to retain historical sales records.

Solution:

– Step 1: Delete the user’s PII from the current table.

– Step 2: Use time travel to retain pre-deletion versions for legal/analytical purposes.

-- Snowflake: Keep data for 30 days post-deletion  
ALTER TABLE users SET DATA_RETENTION_TIME_IN_DAYS = 30; 

Cost Control: Avoiding Time Travel’s Hidden Traps

While powerful, temporal tables can bloat storage if mismanaged.

1. Snowflake Cost Optimization

– Shorten Retention: Default is 1 day (up to 90). Adjust per table:

 ALTER TABLE users SET DATA_RETENTION_TIME_IN_DAYS = 7; 

– Monitor Usage:

 SELECT * FROM TABLE(INFORMATION_SCHEMA.TABLE_STORAGE_METRICS); 

2. Delta Lake Optimization

– Vacuum Old Versions:

 VACUUM delta.`/data/sales` RETAIN 168 HOURS;  -- Keep 7 days 

– Auto-Optimize: Compact small files to reduce metadata overhead.


The Dark Side of Time Travel

1. Storage Surprises:

– Snowflake’s fail-safe period isn’t free.

– Delta Lake’s VACUUM permanently deletes data—test first!

2. Performance Hits:

– Querying historical data can be slower. Cluster tables by date for faster time travel.


Your Action Plan

1. Enable Time Travel:

– Snowflake: It’s on by default.

– Delta Lake: Use delta.enableChangeDataFeed = true for advanced tracking.

2. Implement Retention Policies: Automate cleanup:

-- Snowflake    
ALTER TABLE users SET DATA_RETENTION_TIME_IN_DAYS = 30;  
 -- Delta Lake (Databricks)
SET spark.databricks.delta.properties.defaults.retentionDuration = '30 days';

3. Educate Your Team: Document how/when to use time travel to avoid misuse.


Final Thought

Temporal tables transform your data platform into a living timeline—a single source of truth across past, present, and future. By mastering them, you’re not just solving today’s problems; you’re future-proofing your data against tomorrow’s unknowns.

Have you used time travel to debug a disaster or pass an audit? Share your story below!


#DataEngineering #Snowflake #DeltaLake #GDPR #DataGovernance #TechInnovation #DataArchitecture


DataArchitectureDataEngineeringDataGovernanceDeltaLakeGDPRsnowflakeTechInnovation
Alex

Website: https://www.kargin-utkin.com

Related Story
The Evolution of Data Architecture
Data Structure
The Evolution of Data Architecture
Alex Jun 21, 2025
Data Modeling Revolution: Why Old Rules Are Killing Your Performance
Data DataLake
Data Modeling Concepts
Alex Jun 20, 2025
Data Mesh
Data DataLake ETL/ELT
The Hidden Economics of Data Mesh
Alex Jun 19, 2025
The Hidden Psychology of ETL
Data ETL/ELT
The Hidden Psychology of ETL
Alex Jun 18, 2025
The Unstructured Data Breakthrough
Data
The Unstructured Data Breakthrough
Alex Jun 17, 2025
GenAI-Assisted Data Cleaning: Beyond Rule-Based Approaches
AI Data
GenAI-Assisted Data Cleaning
Alex Jun 14, 2025
Iceberg vs. Hudi vs. Delta Lake
Data VS
Iceberg vs. Hudi vs. Delta Lake
Alex Jun 13, 2025
The Great Cloud Vendor War
Data VS
The Great Cloud Vendor War
Alex Jun 12, 2025
Observability-Driven Data Engineering
Data
Observability-Driven Data Engineering
Alex Jun 10, 2025
Mastering Slowly Changing Dimensions
Data
Mastering Slowly Changing Dimensions
Alex Jun 9, 2025

Leave a Reply
Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts

  • ClickHouse vs. Snowflake vs. BigQuery
  • The Evolution of Data Architecture
  • Data Modeling Concepts
  • The Hidden Economics of Data Mesh
  • The Hidden Psychology of ETL

Recent Comments

  1. Ustas on The Genius of Snowflake’s Hybrid Architecture: Revolutionizing Data Warehousing

Archives

  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023

Categories

  • AI
  • Analytics
  • AWS
  • ClickHouse
  • Data
  • Databricks
  • DataLake
  • DuckDB
  • ETL/ELT
  • Future
  • ML
  • Monthly
  • OpenSource
  • Snowflake
  • StarRock
  • Structure
  • VS
YOU MAY HAVE MISSED
ClickHouse vs. Snowflake vs. BigQuery
VS
ClickHouse vs. Snowflake vs. BigQuery
Alex Jun 23, 2025
The Evolution of Data Architecture
Data Structure
The Evolution of Data Architecture
Alex Jun 21, 2025
Data Modeling Revolution: Why Old Rules Are Killing Your Performance
Data DataLake
Data Modeling Concepts
Alex Jun 20, 2025
Data Mesh
Data DataLake ETL/ELT
The Hidden Economics of Data Mesh
Alex Jun 19, 2025

(c) Data/ML Engineer Blog